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As computers increasingly pervade science the question arises; Do psychologists 
have reason to study any more mathematics than is needed to program control 
of experiments, analyses of data, and theoretical ideas into a computer? And 
because of menu-driven programs to write programs, that soon will be mighty 
little mathematics. I argue that such a view is dangerously short sighted 
because, if adopted, it will seriously erode our somewhat fragde theoretical 
base. The problem is that many important and deep issues of theory 
construction simply cannot be touched by the kinds of ideas now embodied in or 
currently foreseen for computer simulations, including; our ability to reason 
about infinite systems; the fact infinite systems can relate effectively to empirical 
domains that are clearly finite in character; the frequent failure of finite 
mathematical approximations to reveal the simplicity and clarity found in 
infinite models; and the difficulty of understanding computational possibilities 
and problems without careful theoretical analyses. These points are illustrated 
in terms of specinc models that exhibit some major moss-cutting themes of 
mathematical psychology; independence, tradeoff, feedback, invariance, and 
representation. 

INTRODUCTION 

A s  computers increasingly pervade our scientific lives - ranging from 
the mundane delights of wordprocessing to complex theories whose only 
current embodiment is as a simulation - one cannot but ask; 

Are there really any substantial reasons for students to learn 
any more mathematics than is needed to program their 
experiments, data analyses, and theoretical ideas into a 
computer? 

And soon that will be mighty Little mathematics because menu-driven 
programs are available that either themselves do the desired task- be it to 
control experimental runs, record mountains of data, conduct sophisticated 
statistical analyses, or prepare graphical summaries - or that help one to 
prepare a program tailored to do what one wants. As you know, programs 
already exist that produce dazzling graphical displays, plot any 
mathematical function, solve many classes of equations, and implement 
quite complex experimental controls. And there is every reason to believe 
that moderately sophisticated simulations will shortly be within reach of 
anyone with a little computer experience and hardly any mathematical 
knowledge. 

For these reasons and because of the easy availability of powerful 
computers, some hold the view that working scientists need less and less 
mathematics. Despite the obvious appeal of this opinion to both students 
and faculty, it should be approached with considerable caution. Before 
acting on it we need to consider carefully whether such computer programs 
will actually suffice for psychology - or any other science, for that matter? I 
shall attempt to convince you not, at least not for the coming few decades. 
Indeed, I contend that such a view is dangerously short-sighted for the 
development of rigorous theory in psychology. If the view prevails that 
computer literacy is sufficient for theorists, then I believe that within a 
generation we will see serious erosion of psychology's somewhat fragile 
theoretical base. Such erosion will occur because many important and 
deep issues of theory construction simply cannot be touched by the kinds 
of ideas now embodied in or currently foreseen for computer programs. 

This strong claim follows from four facts that are well known to 
mathematically inclined scientists, but tend to be less familiar to or fully 
appreciated by other scientists. They are; 

(1) Some mathematically talented people have, and current computer 
programs definitely do not have, an ability to think and reason to 
good purpose about infinite, often continuous, systems and about 
entire classes of such systems. 

(2) Some of these - more often than not, infinite --systems exhibit an 
uncanny knack of relating effectively to at least certain empirical 
domains that either are inherently finite or, for purposes of data 
analysis, are treated as such. A familiar example is the 
continuous probability distributions that are a staple of statistics. 

(3) In contrast to many infinite systems that, themselves, exhibit great 
simplicity and clarity, finite mathematical approximations to 
them more often than not fail to retain that simplicity and clarity. 
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(4) Finally, without carrying out a careful theoretical analysis, few of us 
are able to tell whether the model driving a simulation is well 
behaved or whether it embodies some pernicious combinatorial 
or asymptotic explosiveness not apparent to casual inspection. 

To illustrate aspects of these observations in a psychological context, I 
discuss three areas with which I am intimately familiar; the representation 
of preferences among uncertain alternatives; systems that are designed to 
integrate several sources of information, but observations of which are 
partially obscured by noise; and the concept of scale type in measurement 
theory. 

Before going into these special cases, I wish to make a few general 
observations about computation and simulation. 

COMPUTATION AND MATHEMATICAL PSYCHOLOGY 

Until about 10 or 15 years ago, a considerable fraction of the 
mathematical effort in any science - psychology was no exception - was 
devoted to making feasible the computations required to use or to test 
explicitly fomulated theories. Such work dominated the early volumes of, 
for example, Psychometrika. Included were techniques of approximation, 
clever algorithms to reduce the magnitude of the computation to what was 
then feasible using mechanical calculators, and of showing how a problem 
could be transfomed into one for which numerical tables already existed. 
Such efforts continue to be of great importance in the field of numerical 
analysis whenever a computation - e.g., weather prediction, airflow 
patterns, or economic forecasting - taxes the power of even the largest 
supercomputer. But for most of us, most of the time, the computational 
power of a PC or minicomputer makes such research of very limited 
immediate concern. We can focus our talents on theoretical issues far 
more than computational ones. 

It is not always the case that a computer algorithm employed in a 
calculation is the computational realization of some explicit theory. 
Beyond some vaguely fomulated intuitions and the specific algorithm itself, 
no explicit theory may exist. A well known, very useful example of such a 
theory-free algorithm is multidimensional scaling (MDS). There simply 
does not exist a mathematical theory of MDS for which the algorithm is a 
computational realization. One suspects that there should be such a 
theory, but no really satisfactory one has been proposed. Were it to exist, 
then certain questions could be addressed mathematically that are now 
studied only by trial-and-error computations. 

SlMULATIONS AND MATHEMATICAL PSYCHOLOGY 

The role of the computer in simulating psychological processes is a 
somewhat more complex topic, about which sharp differences of opinion 
exist. As with computations, two cases need to be distinguished. 

One case arises when the simulation is a detailed, specific realization 
of a well-specified process that has been explicitly fomulated, but that has 
proved recalcitrant to our efforts to deduce explicit properties suitable for 
confronting data. For example, many Markovian processes proposed to 
model aspects of learning are of such analytic complexity that we are 
unable to arrive at explicit statistical properties of the model. In such 
cases, simulations of the random processes involved gain us empirical 
estimates of the statistics that are needed to evaluate the model. This was 
the sort of simulation that first arose with the advent of computers. Of 
course, to the degree that the model has free parameters that have to be 
estimated from the data, this can entail a lot of computation for different 
combinations of parameters, and we may very well run afoul of nasty mis- 
estimates arising from the fact that the statistics involved often have 
complex, non-linear relations to the parameters. Nonetheless, when used 
with care, such simulations can be very helpful. 

For example, one major virtue of such a programming approach to 
theory is the relative ease with which recursiveness, feedback, and 
imbeddedness can be handled. Often, these ideas lead to quite intractable 
mathematics, which is readily dealt with in computer programs. 

The second type of simulation differs from the first primarily in that 
the theory underlying the simulation is not explicit and detailed. Rather a 
theory-schema--often in the form of a flow diagram--is offered, and any 
specific simulation is one possible realization of the ideas embodied in the 
schema. Since the theory is nowhere explicitly stated with the degree of 
precision and detail typical of a mathematical model, the program is its 
author's sense of what is meant by a somewhat loosely formulated 
conceptualization of the processes. Let me cite two examples. 

In his book Image and Mind, Stephen Kosslyn (1980) reported a 
simulation of how he thought the mind might generate a mental image of 
something from stored infomation about some class of entities--his 
examples were automobiles and German Shepherds. The simulation 
embodied several different processes that were suggested to him by some 
mix of his clever experiments and an awareness of familiar computer- 
program commands. The implementation, of course, cannot be in any way 
vague, although his written description of it of course is. The 
implementation simply was one programmer's version of what he believed 
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Kosslyn had in mind as was evolved from discussions and informed by 
repeated computer printouts. 

A far more ambitious simulation effort is that of Allen Newell (in 
preparation) and his colleagues to develop a comprehensive "cognitive" 
apparatus they are calling SOAR. It is able to deal with virtually any 
cognitive problem on which we have a substantial amount of solid data-- 
learning, psychophysics, memory, response times, etc. A number of 
general principles are enunciated in relatively broad terms; flow diagrams 
are used to illustrate the grand design; and ultimately highly specific 
computer code is developed in each of the domains that the theory spans 
to result in the simulation. It is viewed as a general cognitive schema--far 
more comprehensive in scope than anything before it--and each special 
part of the program is governed by a common set of ideas about how the 
system learns. 

What do I see as problematical about such an approach? Why isn't it a 
fulIy acceptable substitute for the traditionally formulated theories? There 
are several, somewhat distinct problems. 

1. Beyond flow diagrams and rather globally stated principles, the theory 
exists only in specific programs. The programs are in no way uniquely 
determined by the principles, and so far as I can see they are 
communicable from one person to another only in the form of long listings 
of computer code. Given the speed with which computer hardware and 
software comes and goes, one wonders if such a theory will be available in 
tangible form 20 or 30 years from now. Recall that vast data bases held on 
IBM cards are now largely unavailable because no one makes card sorters 
and most old ones are beyond practical maintenance. Only if the theory is 
continually rewritten and modified with the advent of new technology will 
it exist in communicable form. 

2. As the complexity of the theory grows, the data used to test it seem to 
grow softer, less precise. Much of the adequacy of such theories depends 
on reproducing qualitative aspects, not detailed numerical aspects, of the 
data. Certainly qualitative agreement is essential, but experience strongly 
suggests that this is not enough. I think, for example, of the devilish time 
cognitive psychologists have had in trying to select among apparently 
simple distinctions. Recall the efforts begun by Sternberg (1969) and 
pursued by many (for a partial summary, see chapters 11 and 12 of Luce, 
1986) to decide whether the search of short term memory is serial or 
parallel, and whether it is exhaustive or self-terminating. 
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3. Despite the apparent scope and generality of such a simulation, the 
actual realization is really something very, very specific. This is in sharp 
contrast to one trend in mathematical modeling of defining broad classes 
of models that are delineated by a series of very specific mathematical 
properties that can be, more-or-less individually, confronted by data. The 
goal is to evolve elementary propositions that seem well confirmed and 
that can be combined to create specific models. 

MATHEMATICALLY EXPLICIT PRINCIPLES IN DECISION 
MAKING UNDER UNCERTAINTY 

As a specific case in which mathematical modeling of the type just 
mentioned has been dominant, let me take individual decision making 
under uncertainty. The area began, basically, with a mathematical model 
of rational decision making that was proposed by von Neumann and 
Morgenstern (1947) in the second edition of their classic-The theory of 
Games and Economic Behavior. Subsequently, a number of attempts have 
been made to increase the scope of that theory - such as extending it to a 
rational model covering chance events for which probabilities are not 
available. This is the well know theory of subjective expected utility (SEU) 
of Savage (1954). Attempts have been made to test its adequacy by 
empirically probing various properties that underlie SEU. I cite three of 
these properties, of which the third is a whole collection of specific ones. 

(i) Transitivity of Preference--if X is preferred to Yand Y to 2, then X 
will be preferred to Y. 

(ii) Monotonicity of Preference--replacing an outcome of a gamble by 
something that is more preferred and keeping all the rest of the 
outcomes the same results in a gamble that is preferred to the 
unmodified one. 

(iii) Accounting Equivalence (or Lack of Certain Framing Effects)-- 
certain pairs of uncertain alternatives that are logically identical 
in the sense that the decision maker receives the same outcomes 
under the same conditions are perceived as indifferent in 
preference. 

The work, which has spanned 30 years and dozens of researchers, has 
explored experimentally the adequacy of these and other principles, and 
mathematically their consequences, when simultaneously invoked. 
Without going into the details, I believe that current evidence, after some 
earlier misunderstandings are discounted, favors transitivity (Bostic, 
Herrnstein, & Luce, submitted; Tversky, Sattath, & Slovic, 1988) and 
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monotonicity as being descriptively correct, but framing effects abound. 
The latter effects are now widely recognized by psychologists largely as a 
result of some striking examples due to Tversky and Kahneman (1986). 
One such example is the substantial differences in choices made, not only 
by student subjects but by professionals as well, depending on whether a 
situation is cast in terms of lives lost or lives saved. But equally, other less 
striking framing effects have been widely ignored by theorists, especially 
economists. This occurs whenever theorists accept, almost without 
comment, as a model for the domain of choice, a family of random 
variables. That assumption implicitly postulates that no psychological 
distinction exists between compound gambles--gambles whose outcomes 
are themselves gambles--and the corresponding logically equivalent simple 
gambles. Such a failure of framing and not a failure of monotonicity is, I 
contend, the basis of the classical AUais paradok that first suggested the 
von Meumann-Morgenstern theory is not descriptively accurate. One must 
be very cautious, indeed, about just which accounting equivalences to 
assume--only the simplest ones stand any chance of being correct. 

Various of us (Luce, in press; Luce & Marens, 1985) have been and 
are exploring mathematically exactly what transitivity, monotonicity, and 
highly selected assertions of equivalences imply about the behavior to be 

,expected. The predictions are rather more specific than one might 
anticipate. Gradually we are evolving new classes of models whose 
properties are well specified and tested in some detail. 

In contrast to theory as simulation, a mathematical theory can be 
formulated in terms of a few quite explicit postulates, and so it can be 
transmitted easily from person to person, generation to generation. It 
relies on detailed explicit predictions and requires very carefully collected, 
very extensive data to probe it because, even in its simplest form, it is 
relatively close to describing much of the observed behavior. Because the 
theory is explicit, one can both test the underlying postulates directly as 
well as seek out sensitive predictions that can be confronted by hard data. 
Finally, again in contrast to simulations, it is readily possible to formulate 
entire classes of models that satisfy one or another of the behavioral 
principles we think might be involved. And using mathematical methods, it 
is possible to derive properties and/or representations of the entire class 
of models exhibiting these postulates. 

In the long run, of course, one seeks to find and verify a set of axioms - 
by then they will be thought of as laws - sufficient for the model defined by 
them to be uniquely specified by data. At present we have a long way to go 
since the current theory leaves wholly unspecified the form of either the 
utility function or the weighting functions to say nothing of being static in 
the sense of not incorporating any time dependencies. 

This slow, somewhat painful evolution of such an explicit theory in a 
highly constrained domain is in marked contrast to the chutzpa of 
attempting to simulate not just this limited class of behaviors, but just 
about everything else a person might do copitively. I have no certainty as 
to which approach will, in the long run, give us a solid understanding of 
human behavior; but I am confident that the answer is not obvious. 

INFORMATION INTEGRATION MODELS O F  SIMPLE CHOICE 

Probably the single largest area of mathematical modeling in 
psychology is the vast array of both stochastic and deterministic models 
that attempt to account for subjects' behavior when making some simple 
response - detecting, recognizing, recalling, discriminating, and the like - to 
stimuli chosen from a limited set of possibilities. Most of these models are 
concerned with how the subject combines various sources of information to 
arrive at a response: information arising from the current stimulus, from 
previous stimuli and responses, and from various forms of feedback and 
instructions by the experimenter. As I say, there is a vast array of such 
models, and this is not the forum to describe them in any detail. Rather, I 
wish to make some quite general observations about the area and to try to 
tie it into the computer revolution. 

Let me immediately acknowledge that such models often strongly 
invite simulation. Many involve some form of temporal probability process 
- so-called stochastic process - and it is not terribly difficult to develop 
programs to simulate them. Moreover, all of us resort to doing so when 
the mathematics gets intractable, for it provides us with an "empirical" 
understanding of processes that we seem not otherwise able to understand. 
But this is a path of last - not first - resort for theorists who have 
substantial mathematical training. Of course, I am concerned that it may 
become the primary avenue for the next generation of psychologists if we 
are not careful. So it is important to understand why an analytical 
understanding is valuable. Let me try to illustrate it by a coupIe of 
examples. 

Every information-integration model I know of can be classed as one 
of two broad types. The one supposes the existence of an underlying, 
deterministic system that is describable by some system of equations - 
algebraic or differential, linear or non-linear - but what we observe is 
corrupted by some kind of noise. This sort of modeling is familiar from a 
great deal of statistical, physical, psychometric, and econometric practice. 
The basic problem is to try to see and estimate the underlying structure 
through the veil of noise. As the system theorist Rudolph Kalman has 
pointed out in a series of papers not widely familiar to psychologists 
(KaIman, 1982; Kalman, 1983; Kalman, Falb, & Arbib, 1969), for any 
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particular underlying system and postulated noise environment it is a 
purely mathematical problem, first, to work out how completely the 
underlying system can be identified from data that are subject to that 
noise, and second, to determine just what data are needed in order to 
achieve the optimal identification--he calls it realization--of the system. 

He is at pains to point out that many well-known practitioners have 
engaged in decidedly unjustified practices of imposing criteria, like least 
squares and principal components methods, aimed at reducing the degrees 
of freedom beyond those that are mathematically inherent in the 
postulated system together with the nature of the corrupting noise. Note 
that what is involved here is not a computational limitation; it is one 
logically imposed by the noise environment in which the data are collected. 
One only understands what is posslble by a careful mathematical analysis. 
Let me quote Kalrnan: 

The principal modeling problems for the future are not 
statistical, but system-theoretical. The role of mathematics is 
much more than just using precise language. Mathematics is 
the main (and perhaps the only) creatlve tool in any deep 
system-theoretical investigation. Had the mathematical aspects 
received their due emphasis after the ... researches of the 
19307s, econometrics would be much further ahead todayas a 
viable scientific discipline. (Kalman, 1982, p.191). 

I would be amiss not to point out our general failure, as theorists, to 
combine the two approaches I have so far mentioned. The axiomatic 
modeling of structure, illustrated by the study of preferences, and the 
systems modeling of noisy data remain isolated. The axiomatic approach 
takes the stance that our observations are inherently qualitative in 
character, and it asks how they can be represented mathematically, often 
as a system of numerical variables. We understand moderately well some 
aspects of the mathematics of such qualitative structures, but only in the 
context of noise-free data. The systems approach presupposes a 
representational form--often systems of linear equations--and asks how to 
identrfy the parameters of the system when the data are corrupted in some 
partially specified way. Both approaches are too idealized. Probably there 
aren't any interesting noise free psychological data. But equally, we usually 
do not have very good reasons for accepting particular systems of 
equations as being of the correct form. 

Once stated, it is clear that the real problem is to begin with qualitative 
observations that are known to be corrupted and then to solve both types 
of problems as well as is logically possible": to infer simultaneously the 

nature of the representation and to understand the uncertainty lying in the 
inference. 

To do this is apparently very difficult. Indeed, 1 cannot cite a single 
example where it has been solved to anyone's full satisfaction. The nearest 
thing is some of the work of Jean-Claude Falmagne (1976, 1979) on noisy 
additive conjoint systems. 

The second approach to the issue of variable data is to deny that they 
are noisy, attributing their haphazardness to an inherent, underlying 
stochastic process. This path has been widely followed in psychology - e.g. 
stochastic models of learning and memory (Estes, 1988; Norman, 1972) 
and of response times (Luce, 1986) are of this sort. 

A good example of the inherent probability approach can be found in a 
recent paper of Riefer and Batchelder (1988) titled "Multinomial modeling 
and the measurement of cognitive processes". They argue as follows. The 
basic postulate underlying computational approaches to cognition is that a 
finite set of discrete processing states is involved in what amounts to a 
Turing machine. Riefer and Batchelder then show that, in a sense, 
multinomial models are a natural statistical generalization: there is some 
probability that the system is in a given state and conditional on that state 
there is a probability distribution over behavior pattens. By elementary 
probability, one arrives at an expression for the probability of the behavior. 
Assuming that the behavior on successive observations is independent - not 
always a viable assumption (see Section 6.6 of Luce, 1986) - they work out 
the appropriate statistical analysis and illustrate how this can be used to 
reach conclusions of interest to cognitive psychologists. 

For example, consider interference in the study of memory. If the 
paired associates (A-B) and (A-C) are learned, there is interference but, 
surprisingly, the recall of B and C are statistically independent. Martin 
(1971, 1981) claimed this to be direct evidence against associative 
interference theories. Greeno, James, DaPolito, and Polson (1978), 
recognizing that such a conclusion is not immediately obvious, developed 
an explicit process model and performed an experiment to test it, but did 
not really provide a suitable statistical model and analysis. Riefer and 
Batchelder do, and they demonstrate that Martin's conclusions were 
justified, namely, associative theories of proactive interference are suspect. 

Work of this character seems to be the primary way we have for 
gaining an understanding of basic cognitive processes. I emphasize that it 
is not sufficient to know how to use or even program a computer in order 
to carry out such research. To the extent we, as teachers, abandon 
requirements for mathematical training of our students, then to that extent 
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we also deprive the field of its ability to formulate and answer such 
questions. 

SCALE TYPES: AN EXAMPLE O F  ABSTRACT REASONING 
ABOUT STRUCTURES 

Most experimental psychologists are acquainted with S.S. Stevens 
(1946, 1951) classification of measurement into several scale types: ordinal, 
interval, ratio, and absolute. Actually, as can be seen in Table 1, which 
gives the defining properties of the several types, the middle pair - interval 
and ratio - should either be the pair log-interval and ratio when the 
measurement scales are onto the positive real numbers or the pair interval 
and difference when they are onto the real numbers. 

Two closely related questions must have occurred to many on hearing 
of his classification : Why these? And what others can occur? 

The answer to "Why these?" was that, at the time some 40 years ago, 
all examples known from physics fell into one or another of these four 
general types. It was, if you will, a naturalistic typology. 

The process of answering "What others can occur?" has proved far 
more subtle, and only in the 1980s has any real clarification come about. 
During the 1950s and 60s it became apparent that there were structures - 
e.g. semiorders (for a general survey see Fishburn, 1985) and the unfolding 
scaling model of the late Clyde Coombs's (1964) - whose scale types were 
not included among Stevens's four and which proved, moreover, not to be 
easily characterized. And that remains true today. 

What has happened, however, is that we now understand fully the scale 
types of one very important general class of highly regular measurement 
structures. Let me try to describe some of the results. 

The first thing to realize is that the concept of scale type is something 
intrinsic to the qualitative structure itself and does not depend upon 
studying directly its numerical representations. A permissible change of 
the representation induces a map of the structure onto itself. Under 
suitable circumstances, that map is in fact structure preserving - an 
isomorphism of the structure onto itself. It can be thought of as describing 
a symmetry of the structure, which is the term physicists use; 
mathematicians call it an automorphism (meaning, self-isomorphism), 

Observe that ordinal, interval, and ratio scales all have the property - 
called homogeneity - that for each pair of points x and y in the structure, 
some automorphism maps x into y. Put another way, the structures are 

very rich in automorphisms and each point is structurally like each other 
point. Thus, we are excluding, for the moment, all non-homogenous 
structures such as those that have singular points that exhibit peculiar 
properties not possessed by other elements in the structure. Examples are 
zero points and infinite ones. (For some results about non-homogenous 
structures, see Alper, 1987, and Luce, submitted). 

Second, we note a major distinction between the ordinal and interval 
cases. In the interval scale case, if two apparently distinct automorphisms 
agree at two distinct points, then in fact the autornorphisms are identical. 
By contrast, in the ordinal case agreement at any finite number of points 
does not force the automorphisms to be the same. We say that a structure 
is finitely unique when it is the case that, for some fixed integer N, 
whenever two automorphisrns agree at N distinct points, then they are 
identical, i.e. agree at every point. 

Narens (1981~1, b) initiated the study of these two concepts in the 
context of measurement theory. Alper (1985, 1987) completed their 
investigation in the context of measurement structures that have 
representations onto the real numbers. The ultimate result is this: for 
those structures that (i) have numerical representations onto the real 
numbers and (ii) are both homogenous and finitely unique, there are just 
three general types of scales: difference (ratio), interval (log-interval), and 
some cases intermediate between these two. The following is an example 
of such an intermediate case: the group of transformations that map x into 
knx + s, where k is a fixed positive number, n ranges over the integers, and 
s is a real number. Although mathematical examples have been given of 
measurement structures of this type (Luce & Narens, 1985), 1 know of no 
scientific applications of them. 

Of course, one next asks: What do we find to be possible when we look 
at non-homogenous structures and when we look at structures that are not 
finitely unique? Little is known about the latter, and some work has been 
done on the former, but this is not the place to describe it in detail. 

One may also ask: What good does it do to know the possible scale 
types, what does it matter to the working scientist? Part of the answer is 
simply that a veil of ignorance has been partially lifted. But another part is 
that with so few scale types logically possible, it is feasible to consider 
complete classifications of structures of various types. For example, Luce 
and Narens (1985) explored those measurement structures that involve an 
ordering and a binary operation (of putting objects together) that is 
monotonic in the order. We were able to give a simple description of all 
such structures that are homogenous and finitely unique. In particular, it 
was our understanding of the interval scale case that led to the rank 
dependent theory of utility mentioned earlier and that has been 
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generalized to gambles with any finite number of outcomes (Luce, in 
press). 

Let me emphasize that thinking about symmetries of infinite structures 
is not something that is easy to envisage reducing to computer code. Yet it 
is just what is needed in order to answer the question "What scale types 
can arise?" and to classify all structures of those scale types that involve, 
for example, a binary operation. Moreover, the sort of mathematics 
involved in these investigations is not, at present, seriously aided by 
knowledge of computer programming, and a psychologist whose entire 
training is focussed on programming is not likely to be exposed to such 
mathematics. 

CONCLUSIONS 

The day may well come when computers are able to do abstract 
mathematics, to  introduce novel definitions and prove new results by new 
methods. The French mathematician Ruelle has written" ... [Llet me make 
the bold suggestion that perhaps in a few decades we shall see what 
nonhuman mathematics looks like. I am not predicting the imminent 
arrival of little green men from outer space, but simply the invasion of 
mathematics by computers. Since the human brain is a sort of natural 
computer, I see no reason why the artificial variety could not perform 
better in the specialized task of doing mathematical research. My guess is 
that, within fifty or a hundred years (or it might be one hundred and fifty) 
computers will successfully compete with the human brain in doing 
mathematics, and that their mathematical style will be rather different 
from ours. Fairly long computational verifications (numerical or 
combinatorial) will not bother them at all, and this should lead not just to 
different sorts of proofs, but more importantly to different sorts of 
theorems being proved. (Ruelle, 1988, p. 260). 

However, with that time scale - 50 to 150 years - we should assume that 
such developments are largely irrelevant for the training of psychology 
graduate students in the coming decade or two. The question we must face 
is whether those who aspire to being theoretical psychologists need to 
understand mathematics beyond that necessary to master computer use. 
Depending on our answer, our curriculum will differ. 

I sense some drift toward easing off on mathematical requirements, 
attempting to substitute computer simulations for theory as we have known 
it. That, of course, is the reason I have elected to address you on the 
matter. 1 do not think any such tradeoff exists and acting as if it does will 
have deleterious effects on the field. D o  not misunderstand: I am not 
arguing for less training in the use of computers. On the contrary, that 

must be a major factor in training. I do argue, however, that 
computational and simulation facility should not be achieved at the 
expense of reducing mathematical experience, at least not for theorists. 
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